22 research outputs found

    Global perspectives on observing ocean boundary current systems

    Get PDF
    Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.Fil: Todd, Robert E.. Woods Hole Oceanographic Institution; Estados UnidosFil: Chavez, Francisco. Monterey Bay Aquarium Research Institute; Estados UnidosFil: Clayton, Sophie. Old Dominion University; Estados UnidosFil: Cravatte, Sophie E.. Centre National de la Recherche Scientifique. Institut de Recherche pour le DĂ©veloppement; Francia. Universite de Toulouse; FranciaFil: Goes, Marlos P.. University of Miami; Estados UnidosFil: Graco, Michelle I.. Instituto del Mar del Peru; PerĂșFil: Lin, Xiaopei. Ocean University of China; ChinaFil: Sprintall, Janet. University of California; Estados UnidosFil: Zilberman, Nathalie V.. University of California; Estados UnidosFil: Archer, Matthew. California Institute of Technology; Estados UnidosFil: ArĂ­stegui, Javier. Universidad de Las Palmas de Gran Canaria; EspañaFil: Balmaseda, Magdalena A.. European Centre for Medium-Range Weather Forecasts; Reino UnidoFil: Bane, John M.. University of North Carolina; Estados UnidosFil: Baringer, Molly O.. Atlantic Oceanographic and Meteorological Laboratory ; Estados UnidosFil: Barth, John A.. State University of Oregon; Estados UnidosFil: Beal, Lisa M.. University of Miami; Estados UnidosFil: Brandt, Peter. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: Calil, Paulo H.. Universidade Federal do Rio Grande; BrasilFil: Campos, Edmo. Universidade de Sao Paulo; BrasilFil: Centurioni, Luca R.. University of California; Estados UnidosFil: Chidichimo, MarĂ­a Paz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de HidrografĂ­a Naval; ArgentinaFil: Cirano, Mauro. Universidade Federal do Rio de Janeiro; BrasilFil: Cronin, Meghan F.. National Oceanic and Atmospheric Administration. Pacific Marine Environmental Laboratory; Estados UnidosFil: Curchitser, Enrique N.. Rutgers University; Estados UnidosFil: Davis, Russ E.. University of California; Estados UnidosFil: Dengler, Marcus. Geomar-Helmholtz Centre for Ocean Research Kiel; AlemaniaFil: DeYoung, Brad. Memorial University of Newfoundland; CanadĂĄFil: Dong, Shenfu. University of Miami; Estados UnidosFil: Escribano, Ruben. Universidad de ConcepciĂłn; ChileFil: Fassbender, Andrea J.. Monterey Bay Aquarium Research Institute; Estados Unido

    Global perspectives on observing ocean boundary current systems

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here

    High‐Resolution, Basin‐Scale Simulations Reveal the Impact of Intermediate Zonal Jets on the Atlantic Oxygen Minimum Zones

    No full text
    Abstract Eastward zonal jets at intermediate depths of 300–800 m connect the oxygen‐rich western boundary of the Atlantic basin with the oxygen minimum zones (OMZs) on the eastern boundary. They are not well represented in climate models because the low horizontal resolution of these models yields excessive viscosity. We use two physical‐biogeochemical model configurations of the Tropical Atlantic to show that the increase in resolution results in more robust intermediate zonal jets and a better representation of the OMZs. The OMZ structure is distorted at low‐resolution as surface, westward jets advect low‐oxygen waters from the eastern boundary much further west than in the climatology. The emergence of robust eastward jets in the high‐resolution run alleviate this problem and reproduce the Atlantic OMZs more accurately. The asymmetry between westward and eastward jets occurs because the former are associated with homogenous potential vorticity regions originating in the eastern boundary while the latter are associated with potential vorticity gradients. Intermediate, eastward jets constrain the westward expansion of the OMZs by supplying oxygen to their western edge. Within the OMZs, higher resolution allows a better representation of the boundary current system and eddying processes at depth which redistribute of low oxygen values from the productive eastern boundary. Basin‐scale, high‐resolution simulations reproduce more accurately the transfer of energy across scales that results in robust zonal jets as well as their impact on the ocean biogeochemistry. Accurate model predictions provide a pathway to disentangle natural and anthropogenic causes of ocean deoxygenation

    Filaments, Fronts and Eddies in the Cabo Frio Coastal Upwelling System, Brazil

    No full text
    We investigate the dynamics of meso- and submesoscale features of the northern South Brazil Bight shelf region with a 500-m horizontal resolution regional model. We focus on the Cabo Frio upwelling center, where nutrient-rich, coastal waters are transported into the mid- and outer shelf, because of its importance for local and remote productivity. The Cabo Frio upwelling center undergoes an upwelling phase, from late September to March, and a relaxation phase, from April to early September. During the upwelling phase, an intense front around 200 km long and 20 km wide with horizontal temperature gradients as large as 8 ∘C over less than 10 km develops. A surface-intensified frontal jet of 0.7 ms−1 in the upper 20 m and velocities of around 0.3 ms−1 reaching down to 65 m depth makes this front a preferential cross-shelf transport pathway. Large vertical mixing and vertical velocities are observed within the frontal region. The front is associated with strong cyclonic vorticity and strong variance in relative vorticity, frequently with O(1) Rossby numbers. The dynamical balance within the front is between the pressure gradient, Coriolis and vertical mixing terms, which are induced both by the winds, during the upwelling season, and by the geostrophic frontal jet. Therefore, the frontal dynamics may be largely described as sum of Ekman and turbulent thermal wind balances. During the upwelling phase, a mix of barotropic and baroclinic instabilities dominates in the upwelling center. However, these instabilities do not lead to the local formation of coherent eddies when the front is strong. In the relaxation phase, the front vanishes, and the water column becomes less stratified. The interaction between eastward coastal currents generated by sea level variability, coastal intrusions of the Brazil Current, and sporadic wind-driven, coastal upwelling events induce the formation of cyclonic eddies with diameters of, approximately, 20 km. They are in gradient-wind balance and propagate along the 100-m isobath on the shelf. During this phase baroclinic instability dominates. Cold filaments with widths of 2 km are formed due to straining and stretching of cold, coastal temperature anomalies. They last for a few days and are characterized by downwelling as large as 1 cms−1. The turbulent thermal wind balance provides a good first order estimate of the dynamical balance within the filament, but vertical and horizontal advection are shown to be important. To our knowledge, this is the first account of these smaller scale features in the region. Because these meso- and submesoscale features on the shelf heavily affect the water properties crucial to productivity of the South Brazil Bight, it is important to take these features into account for a better understanding of the functioning of this ecosystem and its resilience to both direct human activities as well as to climate change

    DataSheet_1_Cyanobacterial Diazotroph Distributions in the Western South Atlantic.docx

    No full text
    1 page. -- Figure S1. Temperature-salinity diagram of upper layer (20 m) for classification of the water masses and the distribution of Chl-a index in each water mass. TW = Tropical Water, and WSACW = West South Atlantic Central Water.Inputs of new nitrogen by cyanobacterial diazotrophs are critical to ocean ecosystem structure and function. Relative to other ocean regions, there is a lack of data on the distribution of these microbes in the western South Atlantic. Here, the abundance of six diazotroph phylotypes: Trichodesmium, Crocosphaera, UCYN-A, Richelia associated with Rhizosolenia (Het-1) or Hemiaulus (Het-2), and Calothrix associated with Chaetoceros (Het-3) was measured by quantitative PCR (qPCR) of the nifH gene along a transect extending from the shelf-break to the open ocean along the VitĂłria-Trindade seamount chain (1200 km). Using nifH gene copies as a proxy for phylotype abundance, Crocosphaera signals were the most abundant, with a broad distribution throughout the study region. Trichodesmium signals were the second most abundant, with the greatest numbers confined to the warmer waters closer to the coast, and a significant positive correlation with temperature. The average signals for the host-associated diazotrophs (UCYN-A, Het-1, and Het-2) were consistently lower than for the other phylotypes. These findings expand measurements of cyanobacterial diazotroph distribution in the western South Atlantic, and provide a new resource to enhance modeling studies focused on patterns of nitrogen fixation in the global ocean.Peer reviewe

    Table_1_Cyanobacterial Diazotroph Distributions in the Western South Atlantic.docx

    No full text
    2 pages. -- Table S1. qPCR primers and probes used in this study for six diazotroph phylotypes. The phylotypes are as follows: UCYN-A, Crocosphaera, Trichodesmium, and three diatom symbionts including, Het-1 (Richelia-Rhizosolenia), Het-2 (Richelia-Hemiaulus), and Het-3 (Calothrix (Richelia –like)-Chaetoceros).Inputs of new nitrogen by cyanobacterial diazotrophs are critical to ocean ecosystem structure and function. Relative to other ocean regions, there is a lack of data on the distribution of these microbes in the western South Atlantic. Here, the abundance of six diazotroph phylotypes: Trichodesmium, Crocosphaera, UCYN-A, Richelia associated with Rhizosolenia (Het-1) or Hemiaulus (Het-2), and Calothrix associated with Chaetoceros (Het-3) was measured by quantitative PCR (qPCR) of the nifH gene along a transect extending from the shelf-break to the open ocean along the Vitória-Trindade seamount chain (1200 km). Using nifH gene copies as a proxy for phylotype abundance, Crocosphaera signals were the most abundant, with a broad distribution throughout the study region. Trichodesmium signals were the second most abundant, with the greatest numbers confined to the warmer waters closer to the coast, and a significant positive correlation with temperature. The average signals for the host-associated diazotrophs (UCYN-A, Het-1, and Het-2) were consistently lower than for the other phylotypes. These findings expand measurements of cyanobacterial diazotroph distribution in the western South Atlantic, and provide a new resource to enhance modeling studies focused on patterns of nitrogen fixation in the global ocean.Peer reviewe
    corecore